
How to Use CSG Event Flags

Reiner Hauser, rhauser@fnal.gov v1.0, 15 May 2005

Contents

1 Introduction 1

2 Existing Documentation 1

3 Preparing your executable 1

4 Updating your framework RCP 2

5 Example 2

1 Introduction

Both the skimming and p17 reconstruction processing puts a number of flags into each event. These flags
allow a fast selection without actually unpacking any of the real data. This document describes how to add
this to an analysis program.

2 Existing Documentation

If you are familiar with the D0 framework and RCPs, have a look at the documentation in the io packages:

http://www-d0.fnal.gov/d0dist/dist/packages/io packages/devel/rcp/FilterEventFlags.rcp <http://www-d0.

fnal.gov/d0dist/dist/packages/io_packages/devel/rcp/FilterEventFlags.rcp>

This should be enough to get you started.

3 Preparing your executable

You can use the FilterEventFlags package with any executable you normally use. You should add the
following line in the bin/OBJECTS file:

FilterEventFlags

Then recompile and relink as usual.

http://www-d0.fnal.gov/d0dist/dist/packages/io_packages/devel/rcp/FilterEventFlags.rcp
http://www-d0.fnal.gov/d0dist/dist/packages/io_packages/devel/rcp/FilterEventFlags.rcp

4. Updating your framework RCP 2

4 Updating your framework RCP

You should add the following two lines to your framework RCP:

string Flow = "generateUserHeader filterUserHeader removeUserHeader generator decide builder merge filter process modify analyze tag finish dump output"

bool OverrideFlow = true

Then, in your list of packages you execute, add a new entry (filter in our case):

string Packages = "geo filter read config ..."

RCP filter = <mypackage FilterEventFlags>

You can copy over the io packages/rcp/FilterEventFlags.rcp to your area and modify it.

5 Example

Let’s say, you are interested in what was formerly the 2MU skim. This is now stored as part of the MUinclusive
skim. So you add the SKIM 2MU tag name to the FilterEventFlags.rcp file:

string PackageName = "FilterEventFlags"

string Combine = "any" // "any" or "all"

string EventFlags = ("SKIM_2MU") // Positive logic event flags.

string NotEventFlags = () // Inverse logic event flags.

bool InvertResult = false; // Invert final result if true.

You can find all the names for event flags from the CSG skimming page.

Now run your executable as usual, e.g. with d0tools. There are two things to look out:

• The events.read file will not give you a correct account of the number of events in the input files.
The reason is that all events that don’t have the SKIM 2MU tag in our example are filtered away and
won’t be read at all.

• To get the real number of events plus all those that were filtered, look in the ...out file for lines that
start with Headers read:

An example output might look like this:

ReadEvent: Closing /sam/cache/boo/recoT_all_0000204941_mrg_249-255.raw_p17.03.03

First header read: Run number: 204941, Event Number: 48052248

Last header read: Run number: 204941, Event Number: 48476131

5. Example 3

Headers read: 15511

First event read: Run number: 204941, Event Number: 48052209

Last event read: Run number: 204941, Event Number: 48476131

Events read: 10290

The time spent on skipping an event is very small, so the total time to run over the full MUinclusive skim
should be comparable to the old separate skims. It will be a bit slower, since the all the files still have to be
delivered to you by SAM.

	Introduction
	Existing Documentation
	Preparing your executable
	Updating your framework RCP
	Example

